RESPIRATION AND BREATHING
At the end of the lesson students should be able to:

- Explain the importance of breathing in humans
- Relate the structures of the respiratory tract to their functions
- Describe the breathing mechanism
- Outline the factors affecting rate of breathing
- Explain the concept of vital capacity
- Distinguish between gaseous exchange and breathing
- Identify characteristics common to gaseous exchanges surfaces
- Differentiate between aerobic and anaerobic respiration
- Explain the role of ADP and ATP in the transfer of energy
- Explain the technique of mouth to mouth resuscitation
- Explain the effects of cigarette smoking
What is Respiration?

Why is Respiration important?
Respiration is the release of energy from food and occurs in all cells.

This must be done to provide us with energy. This energy is used for movement.
1. State two reasons why energy is important to humans.
Respiration is the Opposite of Photosynthesis

Photosynthesis

\[6 \text{CO}_2 + 6 \text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2\]

Cellular Respiration

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O} + \text{ATP}\]

Energy in ATP
Every cell in every living organism needs energy. Cells get their energy from food. The energy that is released from food in the presence of oxygen is called Respiration (Aerobic Respiration).

\[C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \]

Glucose + Oxygen \[\rightarrow \] Energy (ATP) + Carbon + Water Dioxide

From Our food

Can be used for Cell activity e.g. Muscle contraction
Respiration occurs in the mitochondria of cells.
Where do we get glucose from?
This respiration is very efficient it produces 36 molecules of ATP. ATP is the currency for storing energy.
The energy is stored in the phosphate bond. If the bond is broken it becomes ADP or adenosine diphosphate. Thus releasing energy in the process.
Respiration

- When energy is released from glucose, it is stored in the energy molecule called ATP.
- Respiration takes place inside the mitochondria where ATP is made.
2. Explain briefly in your own words how energy is stored and released using ATP.
Recap–

- Fill in the blank spaces with the correct words.

Glucose + _________ → ___________ + water + energy
There are two types of Respiration: Aerobic and Anaerobic.
Aerobic Respiration

Glucose + Oxygen → Carbon Dioxide + Water + Energy

\[C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + \text{Energy} \]

mitochondria
Occasionally however the body requires more energy, however the ability to produce energy is limited to how much oxygen can get to the muscles.
So what does the body do if it respires anaerobically – AN – means without.

Thus anaerobic respiration is respiration that occurs without the use of oxygen.
Aerobic Respiration – When glucose is combined with oxygen to release energy.

Anaerobic Respiration – When glucose is broken down to release energy and lactic acid is also produced in the process. (Example: Yeast during fermentation to make beer).

Sugar \rightarrow Alcohol + Carbon Dioxide + Energy

$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + ATP$

Glucose \rightarrow lactic acid + energy

$C_6H_{12}O_6 \rightarrow 2C_3H_6O_3 +$ energy
It is not very efficient – it only produces 2 molecules of ATP. Compared to thirty six in aerobic respiration.
There are two types of respiration

- **Anaerobic**
 - Does **not use** oxygen
 - Food is **not broken down completely**
 - Little energy is released (**4 ATPs**)
 - **Alcohol or lactic acid** are wastes (Fermentation)
 - Occurs in **cytoplasm**

- **Aerobic**
 - **Uses oxygen**
 - Food is **broken down completely**
 - A lot of energy is released (**38 ATPs**)
 - **Carbon dioxide and water** are wastes
 - Occurs in **mitochondria**
If this type of respiration occurs long enough an oxygen debt occurs.

This is an accumulation of lactic acid in the body. The result of which is that lactic acid has to be removed by oxygen, which continues to be breathed in long after the activity has passed.
Oxygen Consumption

O2 Deficit

O2 Debt

Time
We must remember that diffusion of oxygen into the blood stream is passive, as a result oxygen may not get to the cells that need it quickly enough in strenuous or vigorous exercise.
The Respiratory System
Where do we get oxygen from? Why do we need oxygen?
The primary function of the respiratory system is the supply of oxygen to the blood so this in turn delivers oxygen to all parts of the body.
The respiratory system does this while breathing is taking place. During the process of breathing we inhale oxygen and exhale carbon dioxide. This exchange of gases takes place at the alveoli.
Meanwhile, the waste-rich blood from the veins releases its carbon dioxide into the alveoli. The carbon dioxide follows the same path out of the lungs when you exhale.
Respiration takes place with the aid of the mouth, nose, trachea, lungs, diaphragm and intercostal muscles. Oxygen enters the respiratory system through the mouth and the nose. The oxygen then passes through the larynx and the trachea. In the chest cavity, the trachea splits into two bronchi. Each bronchus then divides again forming the bronchial tubes. The bronchial tubes lead directly into the lungs where they divide into many smaller bronchi, eventually forming many smaller tubes which connect to tiny sacs called alveoli.
Breathing is the muscular movements of the respiratory tract, which keep the respiratory surface supplied with oxygen.

In other words, breathing is the intake of oxygen and the release of carbon dioxide.
State two reasons why breathing is important to humans.
Breathing System

<table>
<thead>
<tr>
<th>Part</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose/ Mouth</td>
<td>makes air warm, moist and filtered before reaching the lungs</td>
</tr>
<tr>
<td>Cilia</td>
<td>Thin, hair-like projections found in the trachea or bronchi which filters bacteria, dust, etc</td>
</tr>
<tr>
<td>Trachea</td>
<td>Air passes through the windpipe or trachea</td>
</tr>
<tr>
<td>Epiglottis</td>
<td>Piece of cartilage at the top of the trachea preventing food from entering the wind pipe</td>
</tr>
<tr>
<td>Larynx</td>
<td>Contains the vocal cords which produce sounds</td>
</tr>
<tr>
<td>Bronchi</td>
<td>2 braches extending from the trachea branching into smaller tubes called bronchioles</td>
</tr>
<tr>
<td>Alveoli</td>
<td>Tiny air like sacs where gaseous exchange takes place</td>
</tr>
</tbody>
</table>
Breathing is mechanical:

The mechanism of breathing is handled by three muscles these are

The external and internal intercostal muscle and also the diaphragm muscle
These three muscles continuously change the volume of the thorax. As a result if the volume increases, air is drawn in if it decreases then air is pushed out.
When we breathe in the internal intercostal muscles contract. The diaphragm flattens. The volume of the thorax increases and air is drawn in.

When we breathe out the external intercostal muscles contract the diaphragm returns to its dome shape, The volume of the thorax decreases and air is pushed out.
Click below to see video
Click below to show video
Vital capacity is the maximum amount of air a person can expel from the lungs after a maximum inspiration.
It is equal to the inspiratory reserve volume plus the tidal volume plus the expiratory reserve volume.
inspiratory reserve volume – the maximal amount of additional air that can be drawn into the lungs by determined effort after normal inspiration
expiratory reserve volume – the additional amount of air that can be expired from the lungs by determined effort after normal expiration.
Tidal volume is the lung volume representing the normal volume of air displaced between normal inspiration and expiration when extra effort is not applied.
Residual volume – the amount of air that cannot be removed from the lungs by expiration.
Mouth to mouth resuscitation
CPR is most successful when administered as quickly as possible, but you must first determine if it's necessary. It should only be performed when a person isn't breathing or circulating blood adequately.
Steps: For mouth to mouth resuscitation.

1. Tilt the person's head back by placing your hand on his forehead and lifting his chin with the first two fingers of your other hand.
2. Look, listen, and feel for air coming out of the victim's mouth by bending your own ear down to his mouth. Tilt your head towards the victim's feet, so you can also look to see if his chest is rising and falling. Continue to tilt the head back with both hands as you look, listen and feel for...
3. See if there is an obstruction. If you do not feel any air, look for anything that may be obstructing the victim's airway. Perform a sweep of the person's mouth using your two fingers while tilting the head back to see if anything is caught in the air passageway.
4. Take a deep breath, pinch the victim's nose closed with the hand that is holding the forehead, seal your lips around the victim's mouth and give them several deep breaths. Pause in between each one to inhale shortly.
5. Look, listen and feel for breathing from your victim. Continue to give him mouth-to-mouth at steady, regular intervals, pausing only to breathe yourself. Always look to see if the chest is rising and falling, to ensure your breaths are getting through.